p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.123D4, C4.52+ 1+4, C8⋊8D4⋊2C2, C2.D8⋊6C22, Q8⋊D4⋊29C2, D4.7D4⋊1C2, C22⋊Q16⋊5C2, (C2×Q16)⋊3C22, C4.Q8⋊33C22, C8.18D4⋊17C2, D4⋊C4⋊2C22, C4⋊C4.129C23, (C2×C4).388C24, (C2×C8).152C23, Q8⋊C4⋊3C22, C23.272(C2×D4), (C22×C4).486D4, C22.D8⋊5C2, (C2×SD16)⋊40C22, (C2×D4).140C23, C22.32(C4○D8), C23.20D4⋊1C2, (C2×Q8).128C23, C4⋊D4.181C22, C23.47D4⋊29C2, C2.69(C23⋊3D4), C22⋊C8.217C22, (C23×C4).568C22, (C22×C8).186C22, C22.648(C22×D4), C22.2(C8.C22), C22⋊Q8.186C22, (C22×C4).1066C23, C22.19C24.20C2, (C22×Q8).314C22, C42⋊C2.150C22, C2.39(C2×C4○D8), (C2×C22⋊C8)⋊29C2, (C2×C4).705(C2×D4), (C2×C22⋊Q8)⋊58C2, C2.49(C2×C8.C22), (C2×C4⋊C4).638C22, (C2×C4○D4).161C22, SmallGroup(128,1922)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.123D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, ac=ca, ad=da, ae=ea, faf=acd, ebe-1=fbf=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e3 >
Subgroups: 428 in 210 conjugacy classes, 88 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C22⋊C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22⋊Q8, C22⋊Q8, C22.D4, C22×C8, C2×SD16, C2×Q16, C23×C4, C22×Q8, C2×C4○D4, C2×C22⋊C8, Q8⋊D4, C22⋊Q16, D4.7D4, C8⋊8D4, C8.18D4, C22.D8, C23.47D4, C23.20D4, C2×C22⋊Q8, C22.19C24, C24.123D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C4○D8, C8.C22, C22×D4, 2+ 1+4, C23⋊3D4, C2×C4○D8, C2×C8.C22, C24.123D4
(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 5)(2 32)(3 7)(4 26)(6 28)(8 30)(9 13)(10 22)(11 15)(12 24)(14 18)(16 20)(17 21)(19 23)(25 29)(27 31)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 13)(3 16)(4 11)(5 14)(6 9)(7 12)(8 15)(17 32)(18 27)(19 30)(20 25)(21 28)(22 31)(23 26)(24 29)
G:=sub<Sym(32)| (9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,5)(2,32)(3,7)(4,26)(6,28)(8,30)(9,13)(10,22)(11,15)(12,24)(14,18)(16,20)(17,21)(19,23)(25,29)(27,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,13)(3,16)(4,11)(5,14)(6,9)(7,12)(8,15)(17,32)(18,27)(19,30)(20,25)(21,28)(22,31)(23,26)(24,29)>;
G:=Group( (9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,5)(2,32)(3,7)(4,26)(6,28)(8,30)(9,13)(10,22)(11,15)(12,24)(14,18)(16,20)(17,21)(19,23)(25,29)(27,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,13)(3,16)(4,11)(5,14)(6,9)(7,12)(8,15)(17,32)(18,27)(19,30)(20,25)(21,28)(22,31)(23,26)(24,29) );
G=PermutationGroup([[(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,5),(2,32),(3,7),(4,26),(6,28),(8,30),(9,13),(10,22),(11,15),(12,24),(14,18),(16,20),(17,21),(19,23),(25,29),(27,31)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,13),(3,16),(4,11),(5,14),(6,9),(7,12),(8,15),(17,32),(18,27),(19,30),(20,25),(21,28),(22,31),(23,26),(24,29)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4F | 4G | 4H | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 2 | ··· | 2 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D8 | 2+ 1+4 | C8.C22 |
kernel | C24.123D4 | C2×C22⋊C8 | Q8⋊D4 | C22⋊Q16 | D4.7D4 | C8⋊8D4 | C8.18D4 | C22.D8 | C23.47D4 | C23.20D4 | C2×C22⋊Q8 | C22.19C24 | C22×C4 | C24 | C22 | C4 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.123D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 14 | 8 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
15 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 11 | 7 | 15 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 10 | 7 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 7 | 4 | 1 | 7 |
0 | 0 | 16 | 2 | 13 | 16 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,14,0,0,0,0,16,8,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[15,0,0,0,0,0,0,9,0,0,0,0,0,0,15,0,0,10,0,0,11,0,0,7,0,0,7,0,2,0,0,0,15,12,0,0],[0,2,0,0,0,0,9,0,0,0,0,0,0,0,0,7,16,1,0,0,0,4,2,0,0,0,0,1,13,0,0,0,1,7,16,0] >;
C24.123D4 in GAP, Magma, Sage, TeX
C_2^4._{123}D_4
% in TeX
G:=Group("C2^4.123D4");
// GroupNames label
G:=SmallGroup(128,1922);
// by ID
G=gap.SmallGroup(128,1922);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,219,352,675,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a*c*d,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^3>;
// generators/relations